Quasitriangular Structures on Cocommutative Hopf Algebras

نویسنده

  • A A Davydov
چکیده

The article is devoted to the describtion of quasitriangular structures (universal R-matrices) on cocommutative Hopf algebras. It is known that such structures are concentrated on finite dimensional Hopf subalgebras. In particular, quasitriangular structure on group algebra is defined by the pairs of normal inclusions of an finite abelian group and by invariant bimultiplicative form on it. The structure is triangular in the case of coinciding inclusions and skewsymmetric form. The nonstandart λ-structure on the representation ring of finite group, corresponding to the triangular structure on group ring, is described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebras and Hopf Algebras in Braided Categories

This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise super-algebras and super-Hopf algebras, as well as colour-Lie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braided-commutative’ or ‘braided-cocommutative’ Hop...

متن کامل

Coloured quantum universal enveloping algebras

We define some new algebraic structures, termed coloured Hopf algebras, by combining the coalgebra structures and antipodes of a standard Hopf algebra set H, corresponding to some parameter set Q, with the transformations of an algebra isomorphism group G, herein called colour group. Such transformations are labelled by some colour parameters, taking values in a colour set C. We show that vario...

متن کامل

Local Quasitriangular Hopf Algebras

We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. That is, the category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category.

متن کامل

Quasitriangular (G-cograded) multiplier Hopf algebras

We put the known results on the antipode of a usual quasitriangular Hopf algebra into the framework of multiplier Hopf algebras. We illustrate with examples which can not be obtained by using classical Hopf algebras. The focus of the present paper lies on the class of the so-called G-cograded multiplier Hopf algebras. By doing so, we bring the results of quasitriangular Hopf group-coalgebras (a...

متن کامل

R-matrices and Hopf Algebra Quotients

We study a natural construction of Hopf algebra quotients canonically associated to an R-matrix in a finite dimensional Hopf algebra. We apply this construction to show that a quasitriangular Hopf algebra whose dimension is odd and square-free is necessarily cocommutative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008